Mechanical Engineering, B.S.
The 91Å®Éñ Department of Aerospace and Mechanical Engineering offers an undergraduate program in mechanical engineering that equips students to shape the future by incorporating the latest industry trends and immersive experiential coursework.Ìý
A robust foundation in mechanical engineering concepts coupled with cross-disciplinary teamwork sets 91Å®Éñ students apart not only as problem solvers but also as ethical innovators and leaders by becoming aware of the impact of engineering decisions in the context of the environment and society. Our program provides students with a comprehensive education in mechanical engineering with a focus on human-centered mechatronics systems design.
Program Highlights
•Ìý Curriculum: Strong foundation in design thinking and engineering sciences, followed by specialization in structures, thermal fluids, and human-centered mechatronics design.ÌýÌý
•Ìý Career focus: Preparation for careers in mechanical engineering, design, development, and manufacturing in emerging technology areas and for graduate studies.ÌýÌý
•Ìý Global reach: The campus in Madrid provides students with a unique international experience and opportunities for study abroad.ÌýThe opportunity is available anytime during the four years.Ìý
•Ìý Experiential learning: Our curriculum emphasized hands-on learning from day one with a focus on practical experience and proactive engagement through design projects and research endeavors. A commitment to innovation, entrepreneurship, service learning, diversity, equity, inclusion, and teamwork is a part of the student experience.Ìý
•Ìý Capstone design experience: Two design courses focusing on product design in thermal and mechanical systems areas.Ìý
•Ìý Research opportunities: Students can access a wide range of funded and voluntary research opportunities, collaborating closely with dedicated faculty members on diverse research projects.Ìý
•Ìý Cutting-edge facilities: State-of-the-art labs and equipment, including the WINDwind tunnel lab, CHROME lab, Mecharithm lab and the Automation, Robotics, Intelligence, and Autonomous Systems (ARIA) lab.
•Ìý Student engagement that fosters diversity and inclusion: Our students have an opportunity to be a part of several active student organizations, participate in national and international competitions, and collaborate with faculty on research projects. Student organizations actively lead initiatives, organizing outreach events to promote the involvement of underrepresented groups in engineering.Ìý
•Ìý Dedicated faculty and staff: Faculty, staff, and students form a learning community that supports individual excellence and shared accomplishment learning.
Curriculum Overview
We take pride in our innovative mechanical engineering curriculum, carefully crafted to offer students a holistic education that seamlessly integrates theoretical knowledge with experiential learning opportunities. Our program stands out for its exceptional faculty, dedicated staff, and access to a wide range of cutting-edge equipment and facilities, creating an immersive learning environment where students can immediately apply their knowledge to real-world scenarios.
Fieldwork and Research Opportunities
91Å®Éñ's mechanical engineering program benefits include summer internships and cooperative education programs available with industry, and federal labs in the St. Louis area and nationwide. These sites include the U.S. Department of Defense, the Boeing Company, Deloitte, Lockheed Martin Corporation, and Northrop Grumman. Further, students can count the internship experience toward a technical elective by documenting their learning.
Funded undergraduate and graduate research opportunities with faculty members in the program are available for qualified students. Funded opportunities range from private industries to federal government research laboratories. Initiatives like SURGE and FIRE offer undergraduates hands-on research experiences, allowing them to work in university labs and apply their learning in practical settings, thereby enhancing their academic journey.
Careers
Industry and government agencies have long recognized the quality of mechanical engineering graduates from 91Å®Éñ. Successful alumni have found employment at corporations and government agencies such as:
•Ìý Boeing
•Ìý Caterpillar
•Ìý Deloitte
•Ìý Department of Defense
•Ìý Neff Power
•Ìý Mercedes Benz
•Ìý Nooter/Eriksen
•Ìý Textron Systems
•Ìý Toyota
Admission Requirements
91Å®Éñ also accepts the Common Application.
Freshman
All applications are thoroughly reviewed with the highest degree of individual care and consideration to all credentials that are submitted. Solid academic performance in college preparatory coursework is a primary concern in reviewing a freshman applicant’s file.
To be considered for admission to any 91Å®Éñ undergraduate program, applicants must be graduating from an accredited high school, have an acceptable HiSET exam score or take the General Education Development (GED) test.Ìý
Transfer
Applicants must be a graduate of an accredited high school or have an acceptable score on the GED.
Students who have attempted fewer than 24 semester credits (or 30 quarter credits) of college credit must follow the above freshmen admission requirements. Students who have completed 24 or more semester credits (or 30 quarter credits) of college credit mustÌýsubmit transcripts from all previously attended college(s).
In reviewing a transfer applicant’s file, the Office of Admission holistically examines the student’s academic performance in college-level coursework as an indicator of the student’s ability to meet the academic rigors of 91Å®Éñ. Where applicable, transfer students will be evaluated on any courses outlined in the continuation standards of their preferred major.
International Applicants
All admission policies and requirements for domestic students apply to international students along with the following:
- Demonstrate English Language Proficiency
- Proof of financial support must include:
- A letter of financial support from the person(s) or sponsoring agency funding the time at 91Å®Éñ
- A letter from the sponsor's bank verifying that the funds are available and will be so for the duration of study at the University
- Academic records, in English translation, of students who have undertaken post-secondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.
Additional Admission Requirements
In addition to the general admission and matriculation requirements of the University, applicants to 91Å®Éñ’s engineering programs must meet the following requirements:
- GPA: Minimum cumulative 3.00 high school GPA for freshmen applicants and 2.70 college GPA for transfer applicants.
- Coursework: Fifteen total units of high school work are required: three or four units of English; four or more units of mathematics, including algebra I and II, geometry and precalculus (Algebra II with Trigonometry is not sufficient). Students should be prepared to start the first semester of freshmen year in Calculus I or higher; three or four units of science, including general science, introduction to physical science, earth science, biology, physics or chemistry; two or three units of social sciences including history, psychology or sociology; and three units of electives.
Admission to the School of Science and Engineering’s degree programs is based on a combination of secondary school grades, college admission test scores, co-curricular activities and attempted college coursework, as well as other indicators of the applicant’s ability, career focus and character. This process respects the non-discrimination policy of the University and is designed to select a qualified, competent and diverse student body with high standards of scholarship and character, consistent with the mission of the University.
°Õ³Ü¾±³Ù¾±´Ç²ÔÌý
Tuition | Cost Per Year |
---|---|
Undergraduate Tuition | $54,760 |
Additional charges may apply. Other resources are listed below:
Information on Tuition and Fees
Scholarships and Financial Aid
There are two principal ways to help finance a 91Å®Éñ education:
- Scholarships: Scholarships are awarded based on academic achievement, service, leadership and financial need.
- Financial Aid: Financial aid is provided through grants and loans, some of which require repayment.
91Å®Éñ makes every effort to keep our education affordable. In fiscal year 2023, 99% of first-time freshmen and 92% of all students received financial aid and students received more than $459 million in aid University-wide.
For priority consideration for merit-based scholarships, apply for admission by December 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.
For more information on scholarships and financial aid, visit the Office of Student Financial Services.
Accreditation
The Mechanical Engineering, B.S. is accredited by the Engineering Accreditation Commission ofÌýABET,Ìý, under the commission's General Criteria and Program Criteria for Mechanical and Similarly Named Engineering Programs.
The Mechanical Engineering, B.S. is accredited by the Engineering Accreditation Commission ofÌýABET, , under the commission's General Criteria and Program Criteria for Mechanical and Similarly Named Engineering Programs.
Program Educational Objectives
The undergraduate program is designed to meet the following specific objectives in order to fulfill the departmental and institutional missions.
- To practice the principles of engineering in mechanical or allied organizations
- To pursue further learning in mechanical engineering or in allied disciplines
- To function as effective engineers with professional knowledge, skills and values
³§³Ù³Ü»å±ð²Ô³ÙÌý°¿³Ü³Ù³¦´Ç³¾±ð²õÌý
Graduates of the mechanical engineering program at 91Å®Éñ will have an ability to:
- Identify, formulate, and solve complex engineering problems by applying principles of engineering, science and mathematics.
- Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- Communicate effectively with a range of audiences.
- Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- Acquire and apply new knowledge as needed, using appropriate learning strategies.
Code | Title | Credits |
---|---|---|
University Undergraduate Core | 32-35 | |
Basic Engineering | ||
°ä³§°ä±õÌý1060 | Introduction to Computer Science: Scientific Programming | 3 |
·¡°ä·¡Ìý1100 | Electrical Engineering 101 | 2 |
·¡°ä·¡Ìý1200 | Computer Engineering 101 | 2 |
³§·¡Ìý1700 &²¹³¾±è;Ìý³§·¡Ìý1701 | Engineering Fundamentals and Engineering Fundamentals Studio | 3 |
General Engineering Courses | ||
²Ñ·¡±·³ÒÌý1011 | Prototyping | 1 |
²Ñ·¡±·³ÒÌý2100³Ý | Statics | 3 |
²Ñ·¡±·³ÒÌý2150 | Dynamics | 3 |
²Ñ·¡±·³ÒÌý2310 | Thermodynamics | 3 |
²Ñ·¡±·³ÒÌý3105 | Mechanics of Solids | 3 |
²Ñ·¡±·³ÒÌý3110 | Linear Vibrations | 3 |
²Ñ·¡±·³ÒÌý3111 | Mechanics Laboratory | 1 |
²Ñ·¡±·³ÒÌý3200 | Fluid Dynamics | 3 |
Mechanical Engineering Courses | ||
²Ñ·¡±·³ÒÌý1000 | Design Thinking | 3 |
²Ñ·¡±·³ÒÌý2400 | Mechatronics Systems Design | 3 |
²Ñ·¡±·³ÒÌý2450 | Engineering Experimentation | 3 |
²Ñ·¡±·³ÒÌý3001 | Mechanical Engineering Lab | 1 |
²Ñ·¡±·³ÒÌý3010 | Machine Design | 3 |
²Ñ·¡±·³ÒÌý3510³Ý | Materials Science | 3 |
²Ñ·¡±·³ÒÌý3600 | Manufacturing Process | 3 |
²Ñ·¡±·³ÒÌý4024 | Mechanical Systems Design | 3 |
²Ñ·¡±·³ÒÌý4300 | Heat Transfer | 3 |
²Ñ·¡±·³ÒÌý4304 | Thermal Systems Design | 3 |
²Ñ·¡±·³ÒÌý4450 | Programmable Logic Controllers and Robotics | 3 |
Technical Electives | ||
Select 12 credits (four courses) from an approved ME list. 1 | 12 | |
Basic Science & Mathematics | ||
°ä±á·¡²ÑÌý1110 &²¹³¾±è;Ìý°ä±á·¡²ÑÌý1115 | General Chemistry 1 and General Chemistry 1 Laboratory | 4 |
±Ê±á³Û³§Ìý1610 &²¹³¾±è;Ìý±Ê±á³Û³§Ìý1620 | University Physics I and University Physics I Laboratory | 4 |
±Ê±á³Û³§Ìý1630 &²¹³¾±è;Ìý±Ê±á³Û³§Ìý1640 | University Physics II and University Physics II Laboratory | 4 |
²Ñ´¡°Õ±áÌý1510 | Calculus I | 4 |
²Ñ´¡°Õ±áÌý1520 | Calculus II | 4 |
²Ñ´¡°Õ±áÌý2530 | Calculus III | 4 |
²Ñ´¡°Õ±áÌý3550 | Differential Equations | 3 |
Math/Science Electives | ||
Select one 3-credit courses from the AE/ME Department approved list. | 3 | |
Total Credits | 128-131 |
Non-Course Requirements
All Science and Engineering B.A. and B.S. students must complete an exit interview/survey near the end of their bachelor's program.Ìý
Continuation Standards
Students must maintain a minimum 2.00 GPA.
- 1
Acceptable technical electives are courses at the 4000 level in the area of program major or the 3000 level or above in allied disciplines. (Allied disciplines include courses in engineering other than student’s major, Mathematics – MATH, Computer Science – CSCI, Management – MGT, Pre-Law – PLS, Physics – PHYS, Chemistry – CHEM, and Biology – BIOL.) The student may also do an approved project or research independent study with a faculty member, or an approved internship with industry.
- Ìý
- Ìý
Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollmentÌýunless otherwise noted. Ìý
Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.
This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.
Year One | ||
---|---|---|
Fall | Credits | |
³§·¡Ìý1700 &²¹³¾±è;Ìý³§·¡Ìý1701 |
Engineering Fundamentals and Engineering Fundamentals Studio |
3 |
²Ñ·¡±·³ÒÌý1011 | Prototyping | 1 |
²Ñ´¡°Õ±áÌý1510 | Calculus I (Critical course: Ìýrequires proficiency exam; must earn a grade of C- or above) | 4 |
°ä±á·¡²ÑÌý1110 &²¹³¾±è;Ìý°ä±á·¡²ÑÌý1115 |
General Chemistry 1 and General Chemistry 1 Laboratory |
4 |
COREÌý1500 | Cura Personalis 1: Self in Community | 1 |
CORE | Equity and Global Identities: Identities in Context | 0-3 |
Ìý | Credits | 13-16 |
Spring | ||
²Ñ·¡±·³ÒÌý1000 | Design Thinking | 3 |
°ä³§°ä±õÌý1060 | Introduction to Computer Science: Scientific Programming | 3 |
²Ñ´¡°Õ±áÌý1520 | Calculus II (must earn a grade of C- or above) | 4 |
±Ê±á³Û³§Ìý1610 &²¹³¾±è;Ìý±Ê±á³Û³§Ìý1620 |
University Physics I and University Physics I Laboratory |
4 |
COREÌý1600 | Ultimate Questions: Theology | 3 |
Ìý | Credits | 17 |
Year Two | ||
Fall | ||
·¡°ä·¡Ìý1100 | Electrical Engineering 101 | 2 |
·¡°ä·¡Ìý1200 | Computer Engineering 101 | 2 |
±Ê±á³Û³§Ìý1630 &²¹³¾±è;Ìý±Ê±á³Û³§Ìý1640 |
University Physics II and University Physics II Laboratory |
4 |
²Ñ·¡±·³ÒÌý2100³Ý | Statics | 3 |
²Ñ´¡°Õ±áÌý2530 | Calculus III | 4 |
CORE | Equity and Global Identities: Dignity, Ethics, and a Just Society | 0-3 |
Ìý | Credits | 15-18 |
Spring | ||
²Ñ·¡±·³ÒÌý2310 | Thermodynamics | 3 |
²Ñ·¡±·³ÒÌý3105 | Mechanics of Solids | 3 |
²Ñ´¡°Õ±áÌý3550 | Differential Equations | 3 |
²Ñ·¡±·³ÒÌý2400 | Mechatronics Systems Design | 3 |
²Ñ·¡±·³ÒÌý2450 | Engineering Experimentation | 3 |
COREÌý2500 | Cura Personalis 2: Self in Contemplation | 0 |
COREÌý1900 | Eloquentia Perfecta 1: Written and Visual Communication | 3 |
Ìý | Credits | 18 |
Summer | ||
CORE | Equity and Global Identities: Global Interdependence | 0-3 |
Ìý | Credits | 0-3 |
Year Three | ||
Fall | ||
²Ñ·¡±·³ÒÌý3510³Ý | Materials Science | 3 |
²Ñ·¡±·³ÒÌý2150 | Dynamics | 3 |
²Ñ·¡±·³ÒÌý3200 | Fluid Dynamics | 3 |
COREÌý3400 | Ways of Thinking: Aesthetics, History, and Culture | 3 |
Technical Elective 1 | 3 | |
COREÌý3500 | Cura Personalis 3: Self in the World | 1 |
COREÌý3600 | Ways of Thinking: Social and Behavioral Sciences | 3 |
Ìý | Credits | 19 |
Spring | ||
²Ñ·¡±·³ÒÌý3010 | Machine Design | 3 |
²Ñ·¡±·³ÒÌý3110 | Linear Vibrations | 3 |
²Ñ·¡±·³ÒÌý3600 | Manufacturing Process | 3 |
²Ñ·¡±·³ÒÌý3111 | Mechanics Laboratory | 1 |
²Ñ·¡±·³ÒÌý4300 | Heat Transfer | 3 |
Technical Elective 1 | 3 | |
Ìý | Credits | 16 |
Year Four | ||
Fall | ||
²Ñ·¡±·³ÒÌý4304 | Thermal Systems Design | 3 |
²Ñ·¡±·³ÒÌý4450 | Programmable Logic Controllers and Robotics | 3 |
COREÌý1200 | Eloquentia Perfecta 2: Oral and Visual Communication | 3 |
Technical Elective 1 | 3 | |
CORE | Eloquentia Perfecta: Writing Intensive | 0-3 |
COREÌý4000 | Collaborative Inquiry | 0-3 |
Ìý | Credits | 12-18 |
Spring | ||
²Ñ·¡±·³ÒÌý4024 | Mechanical Systems Design | 3 |
²Ñ·¡±·³ÒÌý3001 | Mechanical Engineering Lab | 1 |
COREÌý1700 | Ultimate Questions: Philosophy | 3 |
Technical Elective 1 | 3 | |
CORE | Eloquentia Perfecta: Creative Expression | 1-3 |
CORE | Reflection-in-Action | 0-3 |
Math / Science Elective | 3 | |
Ìý | Credits | 14-19 |
Ìý | Total Credits | 124-144 |
- 1
Acceptable technical electives are courses at the 4000 level in the area of program major or the 3000 level or above in allied disciplines. (Allied disciplines include courses in engineering other than student’s major, Mathematics – MATH, Computer Science – CSCI, Management – MGT, Pre-Law – PLS, Physics – PHYS, Chemistry – CHEM, and Biology – BIOL.) The student may also do an approved project or research independent study with a faculty member, or an approved internship with industry.
- Ìý
- Ìý
2+91Å®Éñ programs provide a guided pathway for students transferring from a partner institution.Ìý